114 research outputs found

    Integration of Satellites in 5G through LEO Constellations

    Full text link
    The standardization of 5G systems is entering in its critical phase, with 3GPP that will publish the PHY standard by June 2017. In order to meet the demanding 5G requirements both in terms of large throughput and global connectivity, Satellite Communications provide a valuable resource to extend and complement terrestrial networks. In this context, we consider a heterogeneous architecture in which a LEO mega-constellation satellite system provides backhaul connectivity to terrestrial 5G Relay Nodes, which create an on-ground 5G network. Since large delays and Doppler shifts related to satellite channels pose severe challenges to terrestrial-based systems, in this paper we assess their impact on the future 5G PHY and MAC layer procedures. In addition, solutions are proposed for Random Access, waveform numerology, and HARQ procedures.Comment: Submitted to IEEE Global Communications Conference (GLOBECOM) 201

    RAN Functional Splits in NTN: Architectures and Challenges

    Full text link
    While 5G networks are already being deployed for commercial applications, Academia and industry are focusing their effort on the development and standardization of the next generations of mobile networks, i.e., 5G-Advance and 6G. Beyond 5G networks will revolutionize communications systems providing seamless connectivity, both in time and in space, to a unique ecosystem consisting of the convergence of the digital, physical, and human domains. In this scenario, NonTerrestrial Networks (NTN) will play a crucial role by providing ubiquitous, secure, and resilient infrastructure fully integrated into the overall system. The additional network complexity introduced by the third dimension of the architecture requires the interoperability of different network elements, enabled by the disaggregation and virtualization of network components, their interconnection by standard interfaces and orchestration by data-driven network artificial intelligence. The disaggregation paradigm foresees the division of the radio access network in different virtualized block of functions, introducing the concept of functional split. Wisely selecting the RAN functional split is possible to better exploit the system resources, obtaining costs saving, and to increase the system performances. In this paper, we firstly provide a discussion of the current 6G NTN development in terms of architectural solutions and then, we thoroughly analyze the impact of the typical NTN channel impairments on the available functional splits. Finally, the benefits of introducing the dynamic optimization of the functional split in NTN are analyzed, together with the foreseen challenges

    Density-Aware Smart Grid Node Allocation in Heterogeneous Radio Access Technology Environments

    Get PDF
    Smart grid (SG) is an intelligent enhancement of the conventional energy grid allowing a smarter management. In order to be implemented, SG needs to rely on a communication network connecting different node types, implementing the SG services, with different communication and energy requirements. Heterogeneous network (Het-Net) solutions are very attractive, gaining from the allocation of different radio access technologies (RATs) to the different SG node types; however, due to the heterogeneity of the system, an efficient radio resource optimization and energy management are a complex task. Through the exploitation of the most significant key performance indicators (KPIs) of the SG node types and the key features of the RATs, a joint communication and energy cost function are here defined. Through this approach it is possible to optimally assign the nodes to the RATs while respecting their requirements. In particular, we show the effect of different nodes’ density scenarios on the proposed allocation algorithm

    Adaptive Network Coding Schemes for Satellite Communications

    Full text link
    In this paper, we propose two novel physical layer aware adaptive network coding and coded modulation schemes for time variant channels. The proposed schemes have been applied to different satellite communications scenarios with different Round Trip Times (RTT). Compared to adaptive network coding, and classical non-adaptive network coding schemes for time variant channels, as benchmarks, the proposed schemes demonstrate that adaptation of packet transmission based on the channel variation and corresponding erasures allows for significant gains in terms of throughput, delay and energy efficiency. We shed light on the trade-off between energy efficiency and delay-throughput gains, demonstrating that conservative adaptive approaches that favors less transmission under high erasures, might cause higher delay and less throughput gains in comparison to non-conservative approaches that favor more transmission to account for high erasures.Comment: IEEE Advanced Satellite Multimedia Systems Conference and the 14th Signal Processing for Space Communications Workshop (ASMS/SPSC), 201

    Network Coding Channel Virtualization Schemes for Satellite Multicast Communications

    Full text link
    In this paper, we propose two novel schemes to solve the problem of finding a quasi-optimal number of coded packets to multicast to a set of independent wireless receivers suffering different channel conditions. In particular, we propose two network channel virtualization schemes that allow for representing the set of intended receivers in a multicast group to be virtualized as one receiver. Such approach allows for a transmission scheme not only adapted to per-receiver channel variation over time, but to the network-virtualized channel representing all receivers in the multicast group. The first scheme capitalizes on a maximum erasure criterion introduced via the creation of a virtual worst per receiver per slot reference channel of the network. The second scheme capitalizes on a maximum completion time criterion by the use of the worst performing receiver channel as a virtual reference to the network. We apply such schemes to a GEO satellite scenario. We demonstrate the benefits of the proposed schemes comparing them to a per-receiver point-to-point adaptive strategy

    Energy Efficient Adaptive Network Coding Schemes for Satellite Communications

    Full text link
    In this paper, we propose novel energy efficient adaptive network coding and modulation schemes for time variant channels. We evaluate such schemes under a realistic channel model for open area environments and Geostationary Earth Orbit (GEO) satellites. Compared to non-adaptive network coding and adaptive rate efficient network-coded schemes for time variant channels, we show that our proposed schemes, through physical layer awareness can be designed to transmit only if a target quality of service (QoS) is achieved. As a result, such schemes can provide remarkable energy savings.Comment: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 24 March 201

    Windowed Decoding of Protograph-based LDPC Convolutional Codes over Erasure Channels

    Full text link
    We consider a windowed decoding scheme for LDPC convolutional codes that is based on the belief-propagation (BP) algorithm. We discuss the advantages of this decoding scheme and identify certain characteristics of LDPC convolutional code ensembles that exhibit good performance with the windowed decoder. We will consider the performance of these ensembles and codes over erasure channels with and without memory. We show that the structure of LDPC convolutional code ensembles is suitable to obtain performance close to the theoretical limits over the memoryless erasure channel, both for the BP decoder and windowed decoding. However, the same structure imposes limitations on the performance over erasure channels with memory.Comment: 18 pages, 9 figures, accepted for publication in the IEEE Transactions on Information Theor
    • …
    corecore